Experimental and Artificial Neural Network Approach for Forecasting of Traffic Air Pollution in Urban Areas: the Case of Subotica

نویسندگان

  • Bogdana B. VUJIĆ
  • M. VUKMIROVIĆ
  • Goran V. VUJIĆ
  • Nebojša M. JOVIČIĆ
  • Gordana R. JOVIČIĆ
  • Milun J. BABIĆ
چکیده

In the recent years, artificial neural networks have been used to predict the concentrations of various gaseous pollutants in ambient air, mainly to forecast mean daily particle concentrations. The data on traffic air pollution, irrespective of whether they are obtained by measuring or modeling, represent an important starting point for planning effective measures to improve air quality in urban areas. The aim of this study was to develop a mathematical model for predicting daily concentrations of air pollution caused by the traffic in urban areas. For the model development, experimental data have been collected for 10 months, covering all four seasons. The data about hourly concentration levels of suspended particles with aerodynamic diameter less than 10 μm (PM10) and meteorological data (temperature, air humidity, speed and direction of wind), measured at the measuring station in the town of Subotica from June 2008 to March 2009, served as the basis for developing an artificial neural networks based model for forecasting mean daily concentrations of PM10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial neural network forecast application for fine particulate matter concentration using meteorological data

Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...

متن کامل

Forecasting Ozone Density in Tehran Air Using a Smart Data-Driven Approach

Introduction: As a metropolitan area in Iran, Tehran is exposed to damage from air pollution due to its large population and pollutants from various sources. Accordingly, research on damage induced by air pollution in this city seems necessary. The main purpose of this study was to forecast ozone in the city of Tehran. Considering the hazards of ozone (O3) gas on human health and the environmen...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Groundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran

In this paper, the Artificial Neural Network (ANN) approach is applied for forecasting groundwater level fluctuation in Aghili plain,southwest Iran. An optimal design is completed for the two hidden layers with four different algorithms: gradient descent withmomentum (GDM), levenberg marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG). Rain,evaporation, relative...

متن کامل

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011